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Abstract—Museums, with their intricate layouts and diverse
materials, present unique challenges for accurate indoor position-
ing, especially in environments rich with glass and other reflective
surfaces. These materials can interfere with many positioning
technologies, complicating efforts to track visitor movement accu-
rately for insights into visitor behavior, exhibit engagement, and
space utilization. Indoor positioning technologies have become
essential for understanding movement and interaction within
enclosed spaces, especially in environments like museums, where
optimizing visitor experience and curators exhibit management
are key priorities. While several technologies have been applied
in museums, Ultra-wideband (UWB) positioning has emerged
as a standout solution due to its high accuracy and resilience
in complex indoor environments. This study exploits low-cost
UWB positioning devices to track and analyze visitor behavior
within a museum characterized by extensive glass and reflective
surfaces. Through a comprehensive measurement campaign with
volunteer participants visiting a real exhibition, real-time data
on visitor trajectories, engagement patterns, and interactions
with exhibits were collected. The UWB raw data, acquired from
actual visitor movements, allows us to post-process them and
propose solutions to overcome challenges posed by the glassy
and crowded environment. The results show the capability of
the algorithm to enable robust and reliable tracking even in
challenging spatial configurations. The study’s findings highlight
patterns in visitor flow, high-engagement zones, and preferred
pathways, offering insights into optimizing exhibit layout and
visitor satisfaction. This research underscores the potential of
UWB positioning to generate actionable, data-driven insights in
museum environments, supporting informed decisions in crowd
management, exhibit arrangement, and personalized visitor ex-
periences.

Index Terms—Ultra-wideband (UWB), Indoor Positioning,
Non-Line-of-Sight (NLOS), Ranging Errors, Signal Attenuation,
Museum Environments
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I. INTRODUCTION

Improving the museum experience is an important goal
in order to make visits more engaging and meaningful for
visitors. To achieve this, museums are adopting technologies
such as Augmented Reality (AR), 3D imaging, and multi-
touch screens [1], which enable more engaging and innovative
interaction with exhibits. However, understanding visitor be-
havior is the first step in enhancing this experience, which
requires accurately tracking visitors’ positions within museum
spaces. Such data are crucial for analyzing their emotional
responses, understanding how they interact with the spatial
layout of rooms, and evaluating the effectiveness of exhibits
in communicating their intended messages.

Many museum exhibits are located in enclosed environ-
ments, where tracking the positions of people and objects
requires specialized systems known as Indoor Positioning
Systems (IPS). Unlike Global Navigation Satellite Systems
(GNSS), which rely on satellite-based signals to estimate
positions, GNSS is ineffective indoors due to signal attenuation
and multipath effects caused by walls, glass, or other structural
elements [2]. IPSs are specifically designed to overcome these
challenges, utilizing a range of advanced technologies. Some
of the core technologies used in IPS include Ultra-Wideband
(UWB), Bluetooth Low Energy, Wi-Fi, and Radio Frequency
Identification (RFID) ( [3], [4] ). Among indoor positioning
solutions, UWB stands out as one of the most effective
due to its high accuracy, reaching centimeter-level precision
[5], resilience to interference (as it operates across a wide
frequency spectrum), and low power consumption.

UWB systems typically consist of two key components: the
anchors (base stations) and the tags (small portable devices).
The anchors emit and receive UWB signals to calculate the
distance between themselves and the mobile tags. The accu-
racy and robustness of the system improve as more anchors
are added. Tags receive signals from the anchors, and in



some cases, they may also transmit signals back to assist
in determining their position. Position estimation techniques
can vary, including Time of Flight (ToF), Time Difference of
Arrival (TDOA), Angle of Arrival (AoA), Phase Difference
of Arrival (PDoA), Two-Way Ranging (TWR), as well as
methods like multilateration, trilateration, and triangulation
[3]. UWB is a real-time location system (RTLS), and it
has gained significant attention across various domains such
as manufacturing, healthcare, warehouses [6], and consumer
applications, including smartwatches and smart home devices.

To better understand how UWB systems operate in indoor
environments, we need to examine the conditions that affect
signal propagation and accuracy. When a signal is emitted,
there are two conditions to describe the path of the signal:
the Line-Of-Sight (LOS) condition and the Non-Line-Of-
Sight (NLOS) condition. Under LOS conditions, the signal
travels directly to the receiver without interference. In NLOS
scenarios, however, obstacles attenuate the signal, leading
to inaccuracies in distance estimations [7]. This multipath
effect is quite complex and varies significantly with material
properties. Prior research has explored UWB performance in
obstructed environments, offering insights into its behavior
under such conditions [8]–[11]. Reference [12] provides an
additional study on the characteristics of UWB signal prop-
agation through various building materials, emphasizing the
delay and attenuation effects observed.

This study evaluates the performance of a low-cost com-
mercial UWB system in two distinct enclosed environments.
In the first case study, the UWB device is used to quantify the
effects of five common materials, plexiglass, wood, concrete,
glass, and the human body, on signal propagation and ranging
accuracy. A statistical analysis is conducted to characterize
signal attenuation and estimate errors in range calculations,
while also exploring potential correlations between distance,
power, error estimation, and material type. The second case
study examines the UWB system’s accuracy in a real-case
museum setting, where visitors move dynamically within the
room. This experiment assesses the system’s ability to track
positions under kinematic conditions using only the filtering
methods provided by the device’s algorithm. The presence
of glass exhibits introduces challenges such as multipath
effects, making this an ideal scenario to evaluate the system’s
performance in realistic conditions.

II. METHODS

Radiofrequency signal transmission typically requires a
clear LOS between the transmitter and receiver to achieve
accurate and precise time measurements, which are essential
for range estimation. UWB positioning technology has gar-
nered significant attention due to its capability to maintain
high precision even in NLOS conditions. This is attributed
to UWB’s ability to penetrate various materials, including
walls, making it a robust solution for indoor localization and
positioning applications.

Understanding the ability of UWB signals to penetrate
obstacles and analyzing signal obstruction caused by different

materials are fundamental to developing compensation and
correction algorithms for NLOS conditions. Our approach is
centered on the statistical characterization of ranging errors
and their dependence on key variables such as material prop-
erties, transmission distances, and received power levels. By
systematically investigating these factors, we aim to enhance
the accuracy of UWB-based localization systems in obstructed
environments.

The proposed methodology is based on a well-structured
testing framework conducted in a controlled environment, as
described in detail in Section III-A. The primary objective
of these experiments is to assess the impact of obstacles on
UWB two-way ranging (TWR) measurements and develop an
empirical correction model to mitigate range estimation errors
in NLOS scenarios.

Additionally, the secondary objective of this study is to
classify the type of material obstructing the UWB signals. Ma-
terials can be broadly categorized as insulators and conductors.
Insulating materials such as wood, plastic, and glass exhibit
high transparency to radio signals, resulting in minimal signal
attenuation. Conversely, conductive materials such as metals
and liquids significantly attenuate and distort UWB signals,
leading to reduced accuracy and increased ranging errors. The
properties of these materials influence penetration loss, signal
reflections, and propagation speed, all of which directly impact
the precision of UWB-based distance measurements. This
study systematically examines these effects in a controlled
experimental setup and presents a methodology for correcting
NLOS-induced range errors.

A. Experimental setup

The experiment employed a controlled setup with a UWB
transceiver pair operating in TWR mode. Measurements were
conducted under both LOS and NLOS scenarios to capture
the effect of different materials on signal strength and range
errors. The setup consisted of a set of fixed reference distances
between the transmitter and receiver. A schematic represen-
tation of the test configuration for each distance is shown
in Figure 1. The distance between the material and the tag
was kept constant at 0.5 m throughout all the experiments.
Various materials, including glass, wood, and concrete, were
introduced into the signal path to assess their impact on
signal attenuation. Each material was tested using multiple
samples to minimize random variations and ensure statistical
robustness. The received signal strength (RSSI) and computed
range estimates were recorded in decibels per milliwatt (dBm)
and millimeters, respectively.

B. Problem Definition and Data Processing

This study aims to predict the range error in UWB mea-
surements by analyzing the influence of material properties,
distance, and received power under NLOS conditions. The
range error is defined as the deviation between the estimated
and actual distance, influenced by signal attenuation and
multipath effects. In the proposed test, the range error (∆d) is
given by:



Fig. 1. Schematic representation of the UWB test setup.

∆d = dmeas − dtrue, (1)

where dmeas represents the estimated distance provided by the
UWB transceiver, and dtrue is the known reference distance.

To characterize the material impact on UWB signals, we
first computed penetration loss, which measures the attenua-
tion caused by different materials. The Penetration loss (PL)
it is defined as the attenuation in signal strength caused by
the material through which the signal propagates. For each
material and distance test, we computed the mean received
power as:

Pno−material =
1

N

N

i=1
Pno−material,i (2)

Pmaterial =
1

M

M

j=1
Pmaterial,j (3)

where:
• P no-material is the mean received power measured in free-

space conditions,
• Pmaterial is the mean received power measured when the

signal propagates through the material.
The penetration loss for each material was computed finally

as:
PLmaterial = P no-material − Pmaterial, (4)

The dataset was preprocessed to extract key predictive
features:

• Material Type (Encoded as a categorical variable)
• Distance (Range) – The spatial separation between UWB

transceivers
• Received Power in NLOS Conditions – Indicator of

signal strength degradation
• Penetration Loss – Measures material-induced attenua-

tion

C. Exploratory Statistical Analysis

Before selecting a predictive model, it is essential to un-
derstand the statistical properties of the range error distribu-
tion, which was initially unknown. Many standard regression
techniques assume that errors follow a normal distribution.
To verify these assumptions, we performed the Shapiro-Wilk
(SW) test to assess normality.

If the range error was found to follow a Gaussian dis-
tribution, parametric models (e.g., linear regression) could

be considered. However, if the test results indicated non-
normality, alternative methods such as robust regression or
non-parametric models would be evaluated.

D. Prediction Models

To establish a predictive model for range error correction,
we initially considered parametric regression approaches:

• Linear Regression:

∆dpredicted = β0 + β1 · PL (5)

where β0 and β1 are regression coefficients estimated
using the least-squares approach [13].

• Polynomial Regression:

∆dpredicted = β0 + β1 · PL + β2 · PL2 (6)

to account for potential non-linear dependencies between
Penetration Loss (PL) and range errors.

In case of error deviation from Gaussianity, a Random
Forest Regression model is proposed. Random Forest is a non-
linear approach capable of capturing complex feature interac-
tions and handling non-Gaussian distributions effectively [14].

To ensure model generalization, the dataset was randomly
split into 80% training data and 20% test data. The model was
trained using the selected features and evaluated based on:

• Mean Absolute Error (MAE) – Measures the average
magnitude of prediction errors.

• Root Mean Squared Error (RMSE) – Evaluates overall
error magnitude with emphasis on large deviations.

Additionally, we performed:
• Actual vs. Predicted Error Analysis – To visually assess

model accuracy.

III. CASE STUDIES

To achieve the goals of this paper, two distinct case studies
were conducted. The first focused on a controlled environment,
aiming to determine whether correlations exist between mea-
sured distances, materials, power, and errors. In this context,
the objective was to estimate a mathematical function that
could be used to correct the measured ranges in a real-case
scenario, which is explored in the second case study.

A. First Case Study

In this section, we describe the setup and methodology
of the first experiment. The primary objective of this study
is to analyze the impact of material obstruction on signal
attenuation and ranging accuracy at varying distances.

1) Test Setup: The test was conducted in a long corridor at
Politecnico di Torino, Italy, a controlled environment chosen to
minimize external interference. The experiment setup involved
placing a single UWB anchor at a fixed position and measuring
the signal received by a UWB tag positioned at predefined
distances: 1 m, 2 m, 5 m, 10 m, 20 m, 30 m, 50 m, 75 m,
and 100 m. To evaluate the effect of material obstruction, five
different materials, Figure 2, were individually placed between
the anchor and the tag at a fixed distance of 0.5 m from the



tag. The selected materials were chosen to reflect common
elements found in a museum environment:

• Plexiglass – commonly used in museum display cases.
• Wood – representing structural or decorative elements.
• Glass – simulating museum display cases.
• Concrete – representing walls and barriers in indoor

spaces.
• Human body – accounting for visitor interference.

Additionally, a measurement was conducted without any ob-
structing material to provide a reference for comparison.

Fig. 2. The left image shows the corridor used for the acquisition, while
the images on the right illustrate the five different materials tested for the
experiment.

2) Hardware and Tools: The range values were acquired
using the cost-effective commercial device Pozyx®, ”Ready
to Localize” development kit. This system consists of a
network of radio frequency modules operating at 500 MHz,
which allows centimetric-level precision [5]. The system was
configured to use channel 5 (6.48 GHz bandwidth, 500 MHz
wide) and relied on the TWR technique for range estimation.
The key specifications of the device are detailed in Table I. For
the experiment, we used a single UWB anchor and one UWB
tag. The anchor was securely mounted on a tripod to ensure
stability during the tests, while the UWB tag was attached to
a pole, which functioned as a rover. This setup is illustrated
in Figure 3.

Data acquisition was managed via a Python script pro-
vided by Pozyx®, which continuously recorded the range
data during each experiment. Each test was conducted under
static conditions for 2 minutes per material, ensuring sufficient
data collection at each distance. To validate the positioning
accuracy of the UWB system, it was necessary to establish
a reference trajectory, commonly known as the ground truth,
that is more accurate than the solution being evaluated. In our
study, a laser distance device was used to measure the actual
distance at the beginning of each test.

B. Second Case Study

In this section, we analyze the setup and methodology of the
second experiment, which aims to evaluate the performance
of the UWB device in a real-case indoor environment, a
museum room. The primary objective of this study was to
individually track the positions of seven visitors and assess
the system’s accuracy in a space filled with exhibit cases
made of glass. Glass surfaces are known to affect UWB signal

TABLE I
SPECIFICATIONS OF THE POZYX® SYSTEM

Feature Pozyx® Specification
Size 60 × 53 mm

Weight 12 grams
Band 3.5–6.5 GHz
Power -41 dBm/MHz

Antenna Onboard DW1000
Ranging IR-UWB TWR

Rate 80 Hz

Fig. 3. Laser distance device used for ground truth measurements alongside
the UWB anchor. The image on the right illustrates the mounted tag used for
data acquisition.

propagation due to their reflective and refractive properties,
making this scenario an excellent opportunity to test the
device’s performance in a practical, real-life setting, Figure
4.

Fig. 4. Setup during the museum experiment: PCs used for real-time data
acquisition.

1) Test Setup and Hardware: The test was conducted in
a museum in Turin, Italy, within a room measuring approxi-
mately 30 m × 9 m, Figure 5. Within the room, there were
installed 10 UWB anchors in strategic positions in order
to ensure optimal coverage and minimize obstruction from
exhibit cases, maintaining LOS conditions wherever possible.
The room mostly contained glass surfaces, commonly found in
exhibit cases, which introduced realistic multipath challenges



due to signal attenuation and reflections from these materials.
The participants have been given an UWB tag in their hand
throughout the test that emitted signals to the anchors. To sim-
plify data acquisition, each participant was tested individually,
resulting in separate files for each of them containing range
measurements, signal power, and x, y, and z coordinates.

As in the previous case study, we utilized the same low-cost
commercial device, Pozyx®, configured with a Python-based
script provided by the manufacturer. This script enabled real-
time data collection and ensured consistent acquisition settings
across the experiment. The position estimation was carried out
using the same TWR technique as in the first case study.

Fig. 5. Museum Room Layout

IV. RESULTS

In this section, we describe the main analyses and results
obtained considering the two test setups and data analyses
made in this work.

A. Controlled environment test

1) Computation of Range Errors: To ensure that the analy-
sis was based on stable data, we first pre-processed the dataset
by removing the initial two seconds and the final two seconds
of each acquisition period. This filtering step eliminated tran-
sient effects that might have skewed the results. Following
the data filtering, we generated the error distributions for
each material by comparing the UWB-measured distances
with the corresponding ground truth values obtained from a
laser distance device. To quantify the central tendency and
dispersion of the error data, we utilized the Interquartile Range
(IQR) method to compute both the mean error and the standard
deviation. Figure 6 illustrates the error distributions under

both LOS and NLOS conditions (Glass and Human Body).
In certain cases, such as Glass at 100 m, and Human Body at
75 m and 100 m, the UWB device experienced significant
measurement difficulties. Consequently, a large number of
measurement errors were observed, leading to an insufficient
amount of reliable data for the analysis. These tests were
considered unsuccessful and were excluded from our study.
For all the other valid observations, the normality check was
performed by applying the Shapiro-Wilk (SW) test, which is
common for small samples like in UWB ranging. As shown in
Table II, all p-values are extremely small (p < 0.05), meaning
all tests reject the null hypothesis that errors follow a normal
distribution. In particular, it is possible to notice that also
LOS measurements in case of no materials are not normally
distributed. This deviation from normality suggests that para-
metric statistical models assuming Gaussian-distributed errors,
such as Ordinary Least Squares (OLS) regression, may not be
the most suitable approach for modeling the UWB ranging
errors.

Instead, alternative approaches should be considered to
better capture the underlying statistical properties of the data.
Non-parametric methods, such as quantile regression or robust
statistical estimators, could provide more reliable error correc-
tion models. Additionally, machine learning techniques, such
as decision trees or neural networks, may be explored to model
the complex relationships between range errors, material types,
and received signal strength.

Fig. 6. Error distribution across all the materials.

TABLE II
SHAPIRO-WILK TEST RESULTS FOR DIFFERENT MATERIALS

Material Statistic p-value
No Material 0.971951 1.106893e-29
Plexiglass 0.983311 1.892194e-21
Wood 0.986873 4.039059e-19
Glass 0.980028 8.628346e-11
Concrete 0.986879 2.941006e-11
Human Body 0.966726 8.739188e-81

In the next step of the analysis, the mean absolute error
(MAE) and the root mean squared error (RMSE) are evaluated.



These metrics were calculated for each tested distance and for
each material, providing an evaluation of the UWB system’s
accuracy. As illustrated in Figure 7, there was a noticeable
increase in error values at the 50 m distance compared to other
distances. Additionally, the number of valid measurements,
those without error in estimations, decreased at this distance,
demonstrating a poorer performance of the device.

Table III highlights materials that performed better, showing
low MAE and RMSE values, while Table IV identifies those
with the highest errors. In particular, the ”Human Body”
material caused the most significant disturbance in signal
propagation.

TABLE III
SMALLEST MAE AND RMSE VALUES ACROSS MATERIALS FOR

DIFFERENT TEST DISTANCES.

Test Distance MAE Material RMSE Material
1m Glass Glass
2m Plexiglass No Material
5m Concrete Concrete
10m No Material No Material
20m Wood No Material
30m Glass Glass
50m Wood Wood
75m Glass Glass

100m No Material No Material

TABLE IV
HIGHEST MAE AND RMSE VALUES ACROSS MATERIALS FOR DIFFERENT

TEST DISTANCES.

Test Distance MAE Material RMSE Material
1m Human Body Human Body
2m Human Body Human Body
5m Human Body Human Body
10m Human Body Human Body
20m Human Body Human Body
30m Wood Wood
50m Human Body Human Body
75m No Material No Material

100m Concrete Concrete

Figure 8 presents the error box plots for each material in the
distances tested, providing an overview of the precision and
accuracy of the UWB system. For shorter distances, most of
the materials exhibit smaller error distributions with medians
closer to zero, indicating both high precision and accuracy.
The ”Human Body” material introduces more significant errors
and variability, with the error box deviating significantly from
zero, especially at 2m, indicating low precision. In the case
of medium distances, materials like Glass and Concrete show
relatively stable distributions, but the Human Body continues
to cause larger deviations and less consistent results. At 50
m, the ”Human Body” material stands out for producing
significantly higher errors compared to the other materials.
Since the estimated ranges for this material resulted in errors
at longer distances, the tests involving the Human Body were
concluded at 50 m.

Previous analyses have demonstrated the impact of dif-
ferent materials on range measurement errors. However, two

additional factors that strongly influence these errors are the
relative distance between the transmitter and receiver and the
received signal strength.

Regarding distance, Figure 9 illustrates the mean range error
across different distance steps for all tested materials. While
most materials exhibit relatively low errors across all distances,
the ”Human Body” material shows a significant error drop at
50 meters, with almost no recorded measurements beyond this
point.

If range errors were purely dependent on distance, we
would expect a steady increase in error as distance increases.
However, the plot reveals fluctuations, suggesting that range
errors are influenced by additional factors beyond distance
alone.

From Figure 10, it is possible to analyze the dependency
between range errors and received signal strength. There is a
weak negative correlation between RSSI and error variance,
meaning that weaker signals cause larger errors. Again, no
steady relation is visible, and all the materials show several
fluctuations around the zero.

Fig. 9. Mean Range Error Across Different Distances for Various Materials

Fig. 10. Mean Range Error for Various Materials vs RSSI



Fig. 7. Graphs with MAE, RMSE values and the number of processed valid measurements.

2) Penetration Loss: The penetration loss analysis of differ-
ent materials was performed by comparing the received signal
power in an LOS scenario with NLOS scenarios. The results
indicate that different materials exhibit distinct penetration loss
characteristics, which allowed for clustering based on their
attenuation properties. Using K-Means clustering, materials
were grouped into three distinct clusters based on their average
penetration loss. The clustering results suggest the following
trends:

• Cluster 0 (Low Penetration Loss): This cluster includes
materials such as Plexiglass and Wood, which exhibit the
least attenuation. These materials are more transparent
to radio waves, making them suitable for environments
where minimal signal degradation is desired.

• Cluster 1 (Moderate Penetration Loss): This cluster
consists of materials like Glass and Human Body, which
introduce moderate attenuation. Glass is often found in
buildings and vehicles, and its moderate penetration loss
suggests that radio signals can still propagate through it,
though with some reduction in power.

• Cluster 2 (High Penetration Loss): Concrete was placed
in this cluster, indicating the highest attenuation among
the tested materials. This is expected, as concrete is
known to significantly weaken radio signals, making it
a critical factor in indoor communication environments.

The findings from the controlled environment experiment
provide critical insights into how different materials affect

TABLE V
MATERIAL CLUSTERING BASED ON PENETRATION LOSS

Material Penetration Loss [dBm] Cluster
Concrete 0.95 2

Glass 0.70 1
Human Body 0.64 1

Plexiglass 0.32 0
Wood 0.28 0

UWB signal propagation, particularly in NLOS conditions.
Given that materials such as concrete and glass introduce sig-
nificant attenuation and multipath effects, their impact extends
beyond static range error measurements to real-world tracking
scenarios.

In a museum environment, where exhibit cases, walls,
and human presence create a complex propagation medium,
understanding material-induced signal degradation is essential
for improving positioning accuracy. The second case study
applies the knowledge gained from material penetration anal-
ysis to evaluate UWB-based visitor tracking in a museum
setting, where these signal distortions are naturally present.
By correlating positioning errors with material presence and
multipath effects, this study aims to assess the feasibility of
using UWB technology for real-time visitor monitoring in
environments with reflective surfaces and obstacles.



Fig. 8. Box Plot of error distributions across all distances and materials.

Fig. 11. Penetration Loss at different distances and materials clusterization.

B. Model Performance

The Random Forest Regression model demonstrated strong
predictive capability in estimating range errors. The final
performance metrics obtained were:

• MAE: 0.0117
• RMSE: 0.0367

These values indicate that the model provides highly accurate

predictions of UWB range errors, reinforcing the suitability of
non-linear approaches for NLOS error correction.

Figure 12 presents the scatter plot of actual vs. predicted
range errors. The alignment of points along the ideal y = x
line suggests that the model successfully captures the under-
lying data distribution.

Fig. 12. Actual vs. Predicted Range Errors



C. Second case study

The position estimations obtained during the museum ex-
periment provided a first overview of the trajectories followed
by each participant. These estimations were recorded without
any post-processing or additional data filtering, so they reflect
the raw output from the UWB device. Figure 13 illustrates
the estimated coordinates of three different participants. It is
evident that there are moments where the estimated positions
fall within the exhibit cases or even outside the area of
the room, highlighting the system’s limitations in accuracy.
These infeasible solutions are likely the result of multipath
effects caused by reflections from glass surfaces or even the
participants’ bodies, leading to incorrect range calculations.

Given that it wasn’t possible to obtain a correlation between
range values and materials, the estimations from the museum
environment could not be improved. The discrepancies ob-
served in this case demonstrate the need for future advance-
ments to address the limitations of current indoor positioning
systems. A future work will involve the development of a ded-
icated positioning algorithm capable of mitigating multipath
effects by accounting for the types of materials present in the
environment.

Fig. 13. Estimated coordinates of three different visitors.

V. CONCLUSIONS

This study aimed to evaluate the performance of a low-cost
UWB device in two case studies: in a controlled environment
and in a real museum setting. In the controlled environment,
the experiment focused on understanding the impact of ma-
terial type and distance on the UWB signal propagation. To
address this, the ranging error distribution has been analyzed
for each material used in the controlled environment. Both
the visual plot and SW test show that UWB ranging errors
deviate from the normality condition. Given these findings,
the choice of correction model should take into account the
skewed and heavy-tailed nature of the error distribution, which
can impact the accuracy of positioning corrections in real-
world applications. Future research should further investigate

how different distribution-based models compare in reducing
UWB-ranging errors in NLOS conditions. The analysis of
Penetration Loss performed on the measurements acquired
during the controlled environment test provided the following
considerations:

• Buildings with high concrete content will require signal
repeaters or alternative transmission strategies to maintain
network performance.

• Materials in Cluster 1 (such as glass) can allow partial
signal transmission, making them a viable medium for
certain propagation paths.

• Materials in Cluster 0 are favorable for radio signal
propagation and should be preferred in environments
where high signal penetration is required.

This study has successfully categorized materials based on
their penetration loss characteristics using clustering tech-
niques. The results provide valuable information for UWB
signal interaction behavior with the most common materials
present in museum environments. In this regard, future studies
can extend this analysis by incorporating more materials and
different frequencies to understand frequency-dependent pene-
tration losses. Additionally, testing in real-world environments
with varying humidity and temperature conditions can provide
a more comprehensive understanding of signal attenuation
characteristics.
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